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Abstract. We introduce a state-space representation for vector autoregressive moving-
average models that enables maximum likelihood estimation using the EM algorithm. We
obtain closed-form expressions for both the E- and M-steps; the former requires the
Kalman filter and a fixed-interval smoother, and the latter requires least squares-type
regression. We show via simulations that our algorithm converges reliably to the
maximum, whereas gradient-based methods often fail because of the highly nonlinear
nature of the likelihood function. Moreover, our algorithm converges in a smaller number
of function evaluations than commonly used direct-search routines. Overall, our approach
achieves its largest performance gains when applied to models of high dimension. We
illustrate our technique by estimating a high-dimensional vector moving-average model
for an efficiency test of California’s wholesale electricity market.

Keywords. Vector autoregressive moving average; Kalman filter; missing data; closed
form.

1. INTRODUCTION

There exists no closed-form solution to the problem of maximizing the likelihood
of a vector autoregressive moving-average (VARMA) model. Consequently,
applied researchers employ iterative gradient-based or direct-search optimization
routines. Gradient-based methods may fail to find the maximum because of the
highly nonlinear nature of the likelihood function. Direct-search methods usually
require a large number of function evaluations because they use no information
about the steepness and curvature of the function. As the model dimension
increases, the instability of quasi-Newton and the slow convergence of direct
searches become more severe problems. In this article, we develop a state-space
representation that enables maximum likelihood (ML) estimation using closed-
form expressions via the EM algorithm.

Our state-space representation exploits two features of VARMA models. First,
a vector moving-average (VMA) model possesses the same Wold representation
as a VMA plus white noise. Thus, we add white noise to the MA component of
the model, which preserves its time-series structure and permits a state-space
representation with nontrivial noise in the observation equation. In turn, this
observation noise allows implementation of the EM algorithm as in Shumway
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and Stoffer (1982) and Engle and Watson (1983). Second, a stationary and
invertible finite-order VARMA process reverts quickly to its mean. Hence, to
account for the initial values of the autoregressive component, we develop our
EM algorithm using a complete sample that includes a series of missing data prior
to the observed sample.

Much of the difficulty in ML estimation of Gaussian ARMA models stems
from the covariance matrix of the observed data. The inverse and determinant of
this covariance matrix are highly nonlinear expressions of the models’ parameters.
Most methods in the literature either approximate this inverse and determinant to
enable estimation using analytical expressions (e.g. Whittle, 1951; Durbin, 1959),
or they employ various transformations to reduce the computational burden of
ML estimation (e.g. Newbold, 1974; Ansley, 1979).

Whittle (1951) and Durbin (1959) develop approximations for univariate MA
models. Godolphin (1984) extends Whittle’s method to univariate ARMA models
and shows how to calculate parameter estimates directly from the sample
autocorrelations of the observed data. Durbin’s approximation generates an
algorithm in which the MA coefficients are calculated from the coefficients of a
long-order autoregression. Hannan and Rissanen (1982) and Koreisha and
Pukkila (1989) extend Durbin’s method to univariate and multivariate ARMA
models, respectively. Tunnicliffe-Wilson (1973), Reinsel et al. (1992) and de
Frutos and Serrano (1997) propose similar approximate ML estimation methods.
These closed-form methods are asymptotically equivalent to ML because their
approximation error becomes negligible in large samples. However, they may
deviate substantially from ML in small samples or for models with parameters
close to the stationarity or invertibility boundary.

Box and Jenkins (1970) evaluate the likelihood function for a univariate
ARMA by writing it as a function of the observed data and ‘backcasted’ values of
pre-sample innovations. They use the infinite MA representation of the model and
therefore require a pre-sample of sufficient size to allow complete mean reversion.
Newbold (1974) improves computational efficiency by proposing a method that
requires a small pre-sample of size equal to the maximum order of the
autoregressive (AR) and MA components. Osborn (1977) and Hillmer and
Tiao (1979) extend Newbold’s method to VMA processes, and Nicholls and Hall
(1979) adapt it to VARMA models. However, the formulation suggested by
Newbold still demands calculation of the inverse and determinant of a high-
dimensional covariance matrix that is highly nonlinear in the parameters. By
modifying the algorithm so that it uses operations on lower dimension matrices,
Mauricio (1995, 1997) improves its computational efficiency.

Using a different approach, Ansley (1979) obtains a covariance band matrix for
a univariate ARMA model, which enables a simple Cholesky decomposition and
computationally efficient evaluation of the likelihood. Ansley’s formulation,
which builds on Phadke and Kedem’s (1978) results for VMA models, is often
referred to as the innovations form of the likelihood. Alternatively, Gardner et al.
(1980) show that this innovations form can be calculated by applying the Kalman
filter to a Markovian state-space representation of the model. However, Mauricio

© 2007 The Authors
Journal compilation © 2007 Blackwell Publishing Ltd.
JOURNAL OF TIME SERIES ANALYSIS Vol. 28, No. 5
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(2002) adapts Ansley’s algorithm to the multivariate case and shows that it is
more efficient for likelihood evaluation than the Kalman filter and methods that
follow Newbold’s approach.

As pointed out by Mauricio (1995), the literature on likelihood methods focuses
much more on efficient evaluation of the likelihood than on its maximization.
Conversely, we focus on likelihood maximization. Therefore, we use the Kalman
filter along with a fixed interval smoother because it provides a convenient vehicle
for the E step in the EM algorithm. The Kalman filter also facilitates a
backcasting approach similar to Box and Jenkins (1970) to account for the initial
values of the AR component, which we treat as missing data. Our state-space
representation is related to that in Ansley and Kohn (1983) (also Jones, 1980),
which applies to a VARMA model with missing data and observational error.
Incorporating observational error is akin to adding noise to the AR component of
the model and, in general, it does not preserve the Wold representation of the
VARMA process. In contrast, we add noise to the MA component of the model,
which preserves the Wold representation and enables us to uncover the original
VARMA parameters.

We introduce our estimation method in Section 2. In Section 3, we compare the
performance of our state-space EM algorithm with seven other optimization
routines for ML estimation of both mixed VARMA and pure VMA models. In
Section 4, we illustrate our technique through an efficient market hypothesis test of
California’s wholesale electricity market using the high-dimensional VMA model
implied by the market structure. We find pronounced inefficiencies in the market,
especially between June and November 2000, when the state’s utilities overpaid to
purchase electricity in the spot market. Section 5 concludes the article.

2. ESTIMATION METHOD
We consider the following VARMA(p, ¢) model of dimension d:

OL)Y,=0L)u;, t=1,...,n, (1)
where
OL)=I-DL—---—D,LP, OL)=I+0O L+ ---+0,L,

@, and O, are d x d matrices, L denotes the lag operator, and u, is a Gaussian
vector white-noise process with zero mean and covariance matrix X,. We assume
stationarity and invertibility, which require the roots of |®(L)] = 0 and |@(L)| = 0
to be outside the unit circle. In addition, we make two assumptions to ensure
identifiability of the parameters (®, ©): (i) ©(L) and ®(L) have no common left
factors other than unimodular ones, and (ii) with ¢ as small as possible, and p as
small as possible given ¢, rank([®,, ©,]) = d (Reinsel, 1993, Sect. 2.3.4). The
innovations form of the log-likelihood for eqn (1) is:
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_ n—p 1 - -1 T
10]Y,) = 1, — (T) In |£,| — 3 trace ,:2,,;1 ((zu) ] ) 2)

where the term [, = (Y1, Ys,...,Y,, up_ g1, Up_gi2,- - - Up) captures the contribu-
tion to the log-likelihood of the starting values of Y and u. The vector 0 =
vec(®, O, X,) contains the unknown parameters. We use “T” and ‘|| as the
transpose and the determinant symbols, respectively.

Two features complicate maximization of eqn (2) with respect to 6. First, lags of
u, appear in the model as predictors of Y, but are not observable. Second, /, is a
highly nonlinear function of 6. To remove these two complications, we write eqn
(1) using a particular state-space representation that allows the EM algorithm to
produce closed-form expressions for the likelihood equations. First, we make use
of the result that a VMA(g) plus white noise remains a VMA(g) (Pieris, 1988,
Thm 2), and we write O(L)u, = I'(L)v; + ¢, where v, and ¢, denote white-noise
processes. This setup allows us to treat v, and its lags as observable in the
complete-data log-likelihood that underlies the EM algorithm. Second, we
account for the nonlinearity of /, by expanding the sample Y, to Y = (Y, ,Y,),
such that Y,, = (Yo, Y_4,...,Y_,,_,1) are initial unobserved values. We backcast
Y,,, conditional on the observed Y, and choose m as the point beyond which our
backcasts equal the observed series’ unconditional mean, which implies that the
values preceding Y_,, do not affect /(0]Y,,). Thus, we write eqn (1) in state-space
form as:

Y, =®X, +Za, +& & ~N(0,X%)

3
a;=Ta,-1 +n, n,~N(0,ZXZ,) (3)

where t = —m + 1,...,n and
xt=(yvt, v L YD) =1 @ - @], Z=[1 T1 - T

0 0 2 0
a;r:[v;rw-wv;rfq}prv T:|:qu 0:|a 2:17:|:0L 0:|7 ﬂ;r:[U;r,O,...,O}T

and /,, denotes an identity matrix of dimension (dg x dg). We label the equation
for Y, the observation equation and we refer to the equation for g, as the state
equation. The Gaussian independently distributed disturbance vectors ¢, and 7,
are mutually uncorrelated and independent of a_,,.

There exists a unique mapping from the parameters (Z, X, X,) in eqn (3) to the
parameters (0, X,) in eqn (1) by matching the MA parameters ©; to the infinite
MA representation of eqn (3):

Y, —®X, = (I +Z(I — TL) 'KL)u, = (I + Z(I + TL + T*L* + - - )KL)u,,  (4)

where the matrix K denotes the steady-state value of the Kalman gain (Hamilton,
1994, Sect. 13.5). Therefore, we obtain the original MA coefficients from the
expression G),-:ZT’”K. The structure of the transition matrix 7' implies
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670 K. METAXOGLOU AND A. SMITH

ZTK = 0 for j > g. Moreover, X, equals the steady-state value of the covariance
of the one-step prediction error from the Kalman filter applied to eqn (3). The
Wold representation in eqn (4) illustrates the unique mapping from (Z, X, X,) to
(©, £,). However, the reverse mapping is not unique, which implies that the
parameters (Z, X, X,) are not separately identified. Therefore, to identify the
parameters in eqn (3), we set X, to a fixed diagonal matrix, which allows us to
obtain ML estimates of (Z, £,) and then to calculate from eqn (4) the ML
estimates of the parameters of interest (O, X,).
Omitting constants, the complete-data log-likelihood for eqn (3) is:

1O, @) =1 — (5 ; ") (In 2]+ In %) - trdce

n
> (@) el + (@) ), (5)
t=—m+1
where ¢ =Y, — ®X,— Za, v,=a,— Ta,_, and [_,=UY_,, Y_,._1,-..,
Y_,._pt1, d_p,) capture the contribution to the log-likelihood of the data prior
to —m + 1. Because we set m large enough such that the values preceding Y_,, do
not affect /(0)Y,), we can treat /_,, as a constant. To maximize the incomplete
(observed)-data log-likelihood 1(0]Y,,), we apply the EM algorithm of Dempster

et al. (1977) using the following decomposition of the complete data log-
likelihood:

1(0Y, a) = 1(6]Yx) +1og f(a, Yn|Yn, 0). ()

The second term in eqn (6) refers to the logarithm of the density of the
unobserved (missing) data, given the observed data (Krishnan and McLachlan,
1997, and references therein). The EM algorithm involves an iterative point-to-set
map, M(0), from the parameter space to itself that finds the zeros for the score of
the expected complete-data log-likelihood, conditional on Y,,.

From eqn (6), we write I[(0]Y,) = I(0|Y,a) —log f(a,Y,,]Y,, 0), and in the E step
we take expectations over the distribution of (a, Y,,), given Y, and a current
estimate of 6, say 6:

HO[Y,) = (00 — F(0)0%) // O, a)f (@, Y Ys, 09)da dY,,

—//logf(a,Ym\Yn,O)f(a,Ym|Yn,0’)dade. (7)

The M step solves for 0" by maximizing Q(0/60?) with respect to 0. Hence, for
a sequence of iterates 0, 0V,. . ., with 09" = M(0?), the difference in /(0|Y,,) at
successive iterates is:

10U V1Y,) = 1001Y,) = 0(07V10) — 0(09107) — (H(0"V10) — H (0V09)).
(8)
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The difference of Q functions is positive by construction and the difference in
the H functions is negative by the concavity of the logarithmic function and
Jensen’s inequality (Dempster et al., 1977). Therefore, each iteration of the
algorithm increases /(0|Y,) and, if /(0]Y,) is bounded from above, 1(091Y,)
converges to a stationary value of /(0]Y,,) (conditions of Wu, 1983, summarized in
Krishnan and McLachlan, 1997, Sect. 3.4.2).

The E step requires passes of the Kalman filter and a fixed-interval smoother
to obtain the conditional mean and variance of the state and disturbance
vectors. The Kalman filter recursions applied to eqn (3) provide a convenient
prediction error decomposition for eqn (3) through the mean and the
covariance of the state vector a,,;, conditional on the observations Y, =
(Y1, Y»,...Y,) ie. a, = Ela|Y,] and P,y = var(a,11]Y,). The backward
recursions of a fixed-interval smoother then give the estimates of the state and
disturbance vectors along with their covariances conditional on Y,, i.e. a,, =
Ela|Y,), &, = ElelY,), v, = EV|Y,], and P, = var(a,]Y,), var(e|Y,)
var(v,|Y,), respectively. However, because we do not observe the pre-sample
data Y,, we also require the mean and variance of Y,, conditional on the
observed data Y,,. Therefore, we obtain the smoothed values a,,, Y, X,, and
vin» as well as the associated covariances, by applying the Kalman filter and
fixed-interval smoother to the following modified state-space representation of

eqn (3):
Y, = Aét

9
ét:Fétfl+é’t ()

o o, T T,

li,-a O 0 0
F = P
0 0 0 0’
0 0 Igya O
T
TR LA AT Yt—£p+l’ O Vs ”tquH
&= (v +e)",0,...,0,07,0,...,0" ;
A=[l; 0 - 0]
where

(DIE[(DI (Dp71]7 FIE[FI l"q,l]

and /. denotes an identity matrix of dimension (r x r). We treat the initial
unobserved data Y,, as missing values of Y, which the Kalman filter and the
fixed-interval smoother incorporate by setting the Kalman gain to zero
for missing observations (Durbin and Koopman, 2001, Sect. 4.8). Furthermore,
the algorithm can handle missing values in Y, by applying the same
adjustment.

Omitting constants, the expected complete-data log-likelihood is:
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0(0]0") = (n )(ln|2| ;trace Z ( e) (8,|,,8£n+var(3,\Yn))>

2 t=—m+1
n—+m _
- ( 7 )(ln 1) 7trace Z ») v,‘n t|n + var(v,|Y,)))-
t=—m+1

(10)

Using standard matrix calculus results, the M step, which solves for 0D by
maximizing Q(0/0”) with respect to 6, implies the following analytical
expressions:

260 ] _ | apan By X [ (Yo =) " R Y
PGS X‘na‘n +P XX+ PfX X)Y, + P
2(i+1) _ 1 (UTU +Puv) (12)
v - n+m [nYln [n />
where
a?’; = (a];m+l|n7 aim+2|n7 RS a;zr\n);
and X|Tn and Y, are defined similarly. In addition, we define
P = Z cov(a, X,|Y,)
t=—m+1
and follow analogous notation for the other covariance matrices P, P, P

n> Sn> " n >
P‘ffX , P‘Y“ Pyt and P‘XY Finally, because Y, is of dimension d x 1 and X, is

diagonal, eqn (11) is equivalent to d univariate regressions. We conclude this
section with several remarks about our estimation method:

Remark 1. The conditions for parameter identification in VARMA(p, q)
models often require linear constraints on the elements of ® and ©, which we
incorporate by amending the M step in eqn (11) to its restricted least squares
analogue as in Shumway and Stoffer (1982). Specifically, for a matrix R and
vectors f§ and ¢ satisfying Rf = ¢, with f = vec([Z", ®']"), the M step becomes:

By =g — (10 G YRR @ GHR) TR — g),
where

B(i+l) _ Vec([z(iJrl)T’ (D(i+l)T]T) _ (1 ® G*l)Vec(D)
is the unrestricted estimate in eqn (11) for appropriately defined G and D matrices.
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Remark 2. Applied researchers have discretion over the magnitude of the
approximation error induced by backcasting. To make this error negligible, m
should be chosen such that the backcasted value Y_,,,, approximates E(Y_,,) = 0
to a high degree of precision. Thus, the required value of m may be large when the
roots of |®(L)| = 0 lie close to the unit circle (see Newbold, 1974).

Remark 3. In a pure VMA(g) model, our EM algorithm requires no
backcasting because lags of Y do not enter the model and the initial value a is
multivariate Gaussian with mean zero and variance X,. In this case, omitting
constants, the complete-data log-likelihood is:

1(0]Y,a) = —gln 1z, — (’HZ_ 1) In|Z,| —%trace <Z(ZS)18,£,T +Z(Zv)lvtv?>.
=1 =0
(13)

Thus, the E step requires the Kalman filter and smoother applied directly to eqn
(3) and the M step produces

Z0) = (ar\l;valn + aa)71 ((Yln - U\n)Taln + \Za - \Za)'

n

Remark 4. The VARMA(p, g) process in eqn (1) has mean zero. We incorporate
deterministic explanatory variables such as constants or time trends by adding these
variables to the matrix X, and their coefficients to ® in eqn (3). However,
generalizing to VARMAX models with stochastic explanatory variables would
require a model to impute X,,,, the pre-sample values of the X variables.

Remark 5. In the E step, we apply the univariate filtering and smoothing
algorithm of Koopman and Durbin (2000). In the smoother pass, we use the
iterations summarized in Durbin and Koopman (2001, Sect. 4.3.1), which avoid
the inversion of the contemporaneous covariance matrix P,,. This univariate
algorithm saves computation time and simplifies the calculation of the log-
likelihood because it requires no matrix inversion in either the filter or the
smoother pass.

Remark 6. To assess the impact of noise in the observation equation on the
global convergence rate of the EM algorithm, we performed simulations for a
wide range of values of X,. Following Meng and Rubin (1994) we measured the
convergence rate using

’0(i+1) )
r=maxr;, r;= lim ﬁ )
]
where 9}1') is the jth element of 6 in the ith iteration. Our simulations showed that r
is decreasing in the diagonal elements of X, which implies a faster rate of
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convergence for larger .. Moreover, because a larger value of X, implies a lower
value of X, these simulation findings are consistent with the theoretical result that
the convergence rate is decreasing in the fraction of missing information
(Krishnan and McLachlan, 1977, Sect. 3.9.3).

Remark 7. Several methods exist for estimating the covariance of ML estimates
obtained from the EM algorithm. In the Appendix, we present a closed-form
expression for the asymptotic covariance of the ML estimates by means of a
VAR(1) representation of a VARMA(p, ¢). This method is particularly useful for
high-dimensional models, where numerical differentiation is computationally
demanding. For low-dimensional models, Meilijson (1989) shows that numerical
computation of the empirical observed information matrix consistently estimates
the observed information matrix. An alternative procedure for a numerically stable
asymptotic covariance estimation is the supplemented EM of Meng and Rubin
(1991). Another option for consistent standard error estimation is to use the
bootstrapping method for state-space models of Stoffer and Wall (1991).

3. SIMULATIONS

In this section, we compare our state-space EM algorithm with seven alternative
optimization techniques, including one derivative-based method, three deterministic
direct-search algorithms and three stochastic direct-search algorithms. The
derivative-based method is quasi-Newton with BFGS Hessian updating, which is
available as the ‘fminunc’ command in the Matlab optimization toolbox. The three
deterministic search routines are the Nelder-Mead simplex (Lagarias et al., 1998),
the Generalized Pattern Search (Torczon, 1997), and the Mesh Adaptive Direct
Search (Audet and Dennis, 2003) methods. The first of these three routines is
available as the Matlab ‘fminsearch’ command and the other two are available via
the ‘patternsearch’ command in Matlab’s Genetic Algorithm and Direct Search
(GADS) toolbox. For the first stochastic search routine, we use simulated
annealing, for which we wrote a Matlab module based on Gauss code by Tsionas.'
(See Corana et al., 1987, for additional discussion of this version of simulated
annealing; see also Goffe et al., 1994.) Finally, we apply two genetic algorithms, the
one available as the ‘ga’ command in Matlab’s GADS toolbox, as well as Matlab
code written by Gordy? for the genetic algorithm described by Dorsey and Mayer
(1995). We use Matlab 7.1.0.124 (R14) under Microsoft Windows XP 5.1 on a Dell
Dimension 4700 desktop with 1GB of RAM and an Intel Pentium 4 processor at
2.8 GHz. For each optimization routine available as a Matlab command, we use
the default parameter settings. For the remainder, we use the parameter settings
suggested by the author of each routine.

We generate data from VMA(1) and VARMA(1,1) models of dimensions d =
2, 5 and 15. To ensure identification, we specify the AR coefficients as diagonal
matrices and set each diagonal element equal to 0.6. We draw the MA coefficients
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from a normal distribution, obtaining smallest roots of 29.9, 9.2 and 1.69 for
N = 2, 5and 15, respectively. Because the smallest roots of both the AR and MA
components exceed 1, the model is stationary and invertible. In all cases, we
generate a sample size 7= 200 and use a backcasting sample of 40 observations
to estimate the VARMA models. In the E-step, we apply the univariate filtering
and smoothing algorithm of Koopman and Durbin (2000) to the pure VMA
models and the standard multivariate Kalman filter and smoother for the
VARMA models.

The convergence criterion for our EM algorithm is
min(||0xr1 — Oklloo> kr1—Ikl|oo), Where 6, and [, denote the values of the
parameter vector and the log likelihood at the kth iteration. We use tolerance
levels of 107* for d =2, 5 and 1072 for d = 15. In addition, we restrict the
number of function evaluations for our EM algorithm to 500, with every pass of
the Kalman filter constituting a function evaluation. We terminate the alternative
routines based on one of three criteria: (i) if the algorithm achieves the EM
convergence criteria, (ii) if the number of function evaluations exceeds the number
required by the EM algorithm to meet its convergence criteria, and (iii) if the raw
computation time in seconds exceeds the corresponding time required by the EM
algorithm to meet its convergence criteria. For Matlab’s genetic algorithm, we
always use termination condition (iii) because its interface provides no way to
directly control the number of function evaluations.

To assess stability, we begin each optimization routine with 10 different sets of
initial values. We start the MA and AR parameters at their true values and vary
the starting error covariance matrix X,. We fix the diagonal covariance matrices
%, at 0.2 times the starting value of the corresponding elements in the error
covariance matrix X,. We calculate four statistics to measure the performance of
each optimization routine. The first statistic records the number of times out of 10
that each optimization routine fails. Failures are most commonly caused by non-
invertible covariance matrices for the one-step prediction error in the Kalman
filter. This measure reveals information about the stability of the routine. Next,
conditional on the routine not failing, we record the mean and standard deviation
of the log-likelihood function at termination. These statistics capture both the
speed and stability of the algorithms. Slow routines may still be far from the
maximum when they are terminated, causing them to exhibit a low average
likelihood. Unstable algorithms may have a high standard deviation because they
terminate at different points, depending on starting values. Finally, we record the
computation time in seconds for each optimization routine, conditional on not
failing. Slower algorithms may not exhibit a longer computation time than our
algorithm because we do not allow any routine to use more function evaluations
than our algorithm. As a point of reference, we also report the value of the log-
likelihood for each model when evaluated at the true parameters /(0*).

Tables I and II show that in all cases our EM algorithm gets very close to the
maximum. This result is consistent with the well-documented convergence
properties of the EM algorithm in other contexts (e.g. Redner and Walker,
1984). The standard deviation of its log-likelihood value at termination is always
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TABLE I
VARMA SIMULATION RESULTS

LLF at termination

No. of Time in seconds

failures Mean SD (mean)
d =2, (0*) = -5879
State-space EM 0 —571.3 0.0 21.7
Quasi-Newton 4 —-571.2 0.1 26.8
Nelder-Mead Simplex 1 -573.7 1.1 24.1
Generalized Pattern Search 0 —591.7 21.1 13.2
Mesh Adaptive Direct Search 8 260,133.4 368,718.8 11.5
Simulated Annealing 10 - - -
Genetic Algorithm (Matlab) 7 4.9 4.8 21.0
Genetic Algorithm (Dorsey-Mayer) 10 - - -
d=>5,10")=—1876.8
State-Space EM 0 —1857.3 0.1 82.8
Quasi-Newton 9 —2372.7 - 100.8
Nelder-Mead Simplex 0 —3241.4 937.3 57.3
Generalized Pattern Search 0 —2821.5 605.8 58.3
Mesh Adaptive Direct Search 4 45,358.2 87,504.5 49.0
Simulated Annealing 9 -367.5 — 32.0
Genetic Algorithm (Matlab) 6 38.6 73.4 88.6
Genetic Algorithm (Dorsey-Mayer) 10 - - -
d =15, [(0*) = —7855.5
State-Space EM 0 —7683.6 3.8 1552.3
Quasi-Newton 5 —9499.5 1268.8 1232.8
Nelder-Mead Simplex 0 —11,843.7 2838.1 1379.2
Generalized Pattern Search 0 —11,655.6 2721.1 1248.8
Mesh Adaptive Direct Search 0 —10,708.6 2052.9 1247.2
Simulated Annealing 0 —4,695,418.6 9,519,968.9 1298.5
Genetic Algorithm (Matlab) 3 —269.1 615.5 1492.2
Genetic Algorithm (Dorsey-Mayer) 10 - - -

small and is often orders of magnitude smaller than the corresponding standard
deviations for the other methods. For the VARMA models, the quasi-Newton
method fails 4, 9 and 5 times out of 10 for d = 2, 5 and 15, respectively. When it
does converge, it locates the maximum every time for the d = 2 case, but is far
from the global maximum the one time it converges for d = 5. For d = 15, the
quasi-Newton method returns an average log-likelihood of —9499.5, which is far
below the corresponding value of —7683.6 for our state-space EM algorithm.
Moreover, the standard deviation of the quasi-Newton log-likelihood equals
1268.8, compared with 3.8 for our algorithm. Coupled with the high failure rate,
this large variation shows that the quasi-Newton method is unstable when applied
to VARMA models. In the pure VMA models, the quasi-Newton method had
zero failures but it proved to be particularly sensitive to its starting values with
standard deviations of 172.2 and 3274.4 for the d =5 and 15 cases. Thus,
although the quasi-Newton method works well for VMA models of dimension 2,
it is not robust to starting values for models of higher dimension.

In most cases, the direct-search methods perform worse than our state-space EM
algorithm. Either they are too slow and therefore do not get close to the maximum
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TABLE II
VMA SIMULATION RESULTS

LLF at termination

No. of Time in seconds

failures Mean SD (mean)
d =2, /0" =-571.7
State-Space EM 0 —573.5 0.0 18.3
Quasi-Newton 0 —573.7 0.8 6.9
Nelder-Mead Simplex 0 —574.6 0.2 7.6
Generalized Pattern Search 0 —587.7 18.6 7.3
Mesh Adaptive Direct Search 0 —574.5 1.3 7.3
Simulated Annealing 10 - - -
Genetic Algorithm (Matlab) 7 12,398,543.5  21,277,906.4 18.1
Genetic Algorithm (Dorsey-Mayer) 0 —577.8 0 34
d =35, /(0F) = —1876.8
State-Space EM 0 —1871.9 0.0 453
Quasi-Newton 0 —2069.7 172.2 24.1
Nelder-Mead Simplex 0 —3368.7 1014.9 19.8
Generalized Pattern Search 0 —3054.7 772.1 19.9
Mesh Adaptive Direct Search 0 —2135.8 195.9 20.4
Simulated Annealing 10 - - -
Genetic Algorithm (Matlab) 8 6,439.422.4 9,061,032.6 49.8
Genetic Algorithm (Dorsey-Mayer) 0 —2068.9 0.48 46.4
d =15, I(0*) = —7855.5
State-Space EM 0 —8184.2 0.0 367.7
Quasi-Newton 0 —12,992.8 3274.4 456.1
Nelder-Mead Simplex 0 —12,969.2 3261.5 450.7
Generalized Pattern Search 0 —12,806.6 3167.3 151.2
Mesh Adaptive Direct Search 0 —9878.5 1263.6 151.4
Simulated Annealing 0 —8210.2 0.1 175.9
Genetic Algorithm (Matlab) 10 - - -
Genetic Algorithm (Dorsey-Mayer) 0 —8210.2 0.1 1357.2

in the allotted number of function evaluations, or they fail. The Nelder-Mead
simplex and the Generalized Pattern Search algorithms perform well for d = 2,
but poorly for N = 5 and 15. In these higher-dimensional cases, the zero failure
rate suggests that these routines would eventually converge if given enough time.
The other deterministic search algorithm, Mesh Adaptive Direct Search, performs
poorly in all cases. Of the stochastic search methods, simulated annealing was the
worst performer, failing almost every time for the VMA models and yielding
nonsense results for the VARMA models. This algorithm requires the user to
choose many inputs, and moving away from the recommended choices could
improve the algorithm’s performance (Corana efal., 1987). The genetic
algorithms also performed poorly in many cases. The exception is the version
presented by Dorsey and Mayer (1995) which, despite being slow in terms of
computation time, always finds the global maximum for the VMA models.
However, it fails every time for the VARMA models.

Overall, our state-space EM algorithm proves robust and relatively fast. The
only case in which its average computation time exceeds a reliable alternative is
the VMA with d = 2. For this model, many of the methods achieve convergence
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in less than 8 seconds, compared to 18 seconds for our algorithm. However, if we
enlarge the model by adding autoregressive terms or extra variables, then our
algorithm maintains its stability and becomes much faster than the alternatives.
Moreover, to apply our algorithm the researcher has only to specify the
covariance matrix of the additional noise and the number of additional
observations for the purpose of the backcasting in the VARMA models. In
contrast, numerous tuning parameters are required to initialize the other gradient-
free methods.

4. PRICE SPREADS IN CALIFORNIA ELECTRICITY MARKETS

In this section, we test the efficiency of the California electricity markets using
the high-dimensional VMA model implied by the market structure. On 1 April,
1998, the restructured California wholesale electricity sector commenced
operation. The legislation assigned leading roles to two institutions, the
Power Exchange (PX) and the Independent System Operator (ISO). The PX
operated a day-ahead forward energy market, and the ISO operated the state’s
real-time or spot energy market. Bohn et al. (1998) provide additional details
for the ISO spot and the PX market operations. The efficient market hypothesis
implies that the suppliers of electricity try to sell in the market with the highest
price whereas the buyers of electricity try to buy in the lower-priced market
until they reach an equilibrium in the sense that the day-ahead price equals the
expected spot price. We test the hypothesis that the difference (spread) between
the spot and day-ahead prices has zero mean. (See Longstaff and Wang (2004),
Saravia (2003), and Borenstein et al. (2004) for similar tests in the Pennsylvania/
New Jersey/Maryland, New York, and California markets, respectively.)

In the day-ahead market, PX participants, such as generators, utilities,
marketers and retailers submitted bids to sell and buy energy for the 24 hours
of the following day, starting with the midnight to 1:00 AM interval. PX
participants had to submit their bids by 7:00 AM the day before the production
day for all of its 24 hours. At the 7:00 AM deadline, the intersection of 24
aggregate supply-and-demand curves produced a separate market-clearing price
for each hour. To maintain system-wide balance between demand and supply, the
ISO used bids in its real-time market to increment and decrement supply or to
decrement demand. For the purpose of real-time pricing, the ISO calculated the
net incremental or decremental energy usage over 10-minute intervals for every
hour. A MWh-weighted average of the six incremental and/or decremental prices
produced the real-time ex post price. We refer to this real-time ex post price as the
spot price.

Because PX participants submitted their bids up to 7:00 AM, there was a
window of between 18 and 41 hours from the submission of the day-ahead
bids to the time that the ISO cleared the corresponding spot market. Thus, the
difference between the day-ahead and the spot prices depends on accumulated
information in the intervening hours, which implies an MA structure for the
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price spreads (Borenstein et al., 2004). We denote the information arriving in
hour ending /# and day d by u;, and we express the difference between the day-
ahead and the spot prices as MA processes of between 18 and 41 uy,; terms.
With an observation in our sample being y,, = ISO,, — PX,; where 1SO,,
and PX,, are the spot and the day-ahead prices for hour ending & = 1,...,24
and day d, we write:

yia =P +  weg A Oruagr o+ Opisura—n
»a=p, + Uzq + Ohyuig + Orpuragy +---+ Or19u74-1

Vud=Pog + g +F Oupusg + Owosuig + Onapsussg—1 +---+ Oraiuzai
with an equivalent VMA(1) representation of dimension 24:
Yo =B+ 0O¢U; + O1Uy_1, (14)

where Y, = ISO,; — PX,, for appropriately defined matrices ®, and ©;. The
serially uncorrelated zero-mean Gaussian error vector U, has diagonal covariance
matrix X, and B = (f,...,$»4). Because our hypothesis is that the day-ahead
prices are unbiased estimates of the spot prices, we test whether B is statistically
significantly different from zero. Taking into account the MA structure is
important for correct inference about B.

The model in eqn (14) contains 708 MA parameters, so numerical
differentiation by gradient-based methods is computationally infeasible. We
estimate the model by applying our EM algorithm to the case of a pure VMA
model (Remark 3). We iterate the filtering and smoothing recursions of Koopman
and Durbin (2000) in the E-step and 24 univariate regressions in the M-step until
convergence. We calculate the standard errors for B using the empirical observed
information matrix of Meilijson (1989). Following Remark 7, we derive the
standard errors associated with the MA parameters in © as in the Appendix,
var(vec(@®)) = (1/n)Zy @ =,

The California electricity market entered an almost year-long period of crisis
beginning in May 2000. Because of the crisis, PX ceased its operations at the end
of January 2001, although it was already malfunctioning in December 2000
(Borenstein et al., 2004). Hence, we perform our hypothesis test separately for the
pre-crisis period, 1 April 1998 to 31 May 2000, and the crisis period, 1 June 2000
to 30 November 2000. We have 792 and 183 observations for each hour in the two
periods, respectively. The ISO spot prices are publicly available from the Open
Access Same Time Information System of the California ISO. The PX prices are
also publicly available, through the University of California Energy Institute
website. In both the day-ahead and spot markets, binding transmission
constraints along Path 15, the state’s major transmission line gave rise to
different prices north of Path 15 (NP15) and south of Path 15 (SP15). We estimate
the 24-hourly price spreads (spot minus day-ahead) for both NP15 and SP15.

To illustrate the MA structure, we plot in Figure 1 the estimated MA
coefficients for the peak hour 16:00 for SP15 in the pre-crisis period. MA
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FIGURE 1. MA coefficient estimates for hour 16:00

parameters for hours around 16:00 exhibit similar patterns in terms of their
values and signs. This pattern implies that most information arrives in the
market during daytime hours, beginning with the hour that market participants
submit their day-ahead bids. Other daily events that provide information
include two rounds of bidding in the ISO reserves market (10:00 and 12:00 AM),
the ISO’s announcement of its requirements for reliability must run units
(around 14:00 pm), and the ISO’s 2-day-ahead forecasts of system conditions
(17:00 pm). Similar to Figure 1, early morning and late evening hours generally
exhibit large and positive MA coefficients at short lags. However, at longer lags,
these hours exhibit some idiosyncrasies, most probably due to thinner trading
outside regular business hours. There are many more significant MA coefficients
for all hours in both SP15 and NP15 during the pre-crisis period than the crisis
period. The reduction in significance in the crisis period probably reflects the
unpredictable conditions of the entire wholesale energy market in the state
during that time.

For the pre-crisis period, the NP15 and SP15 spreads are different from zero at
5% significance level for 14 and 12 out of the 24 hours, respectively, as shown in
Figure 2. For the crisis period, the number of hours of significant NP15 spreads

© 2007 The Authors
Journal compilation © 2007 Blackwell Publishing Ltd.
JOURNAL OF TIME SERIES ANALYSIS Vol. 28, No. 5



ESTIMATING VARMA MODELS USING EM ALGORITHM 681

NP15 pre—crisis

SP15 pre—crisis

80 80
60 60
40 40
=
S E
g 20 S 20
S e _
0 S o =Ty == == 0 S Y =S =
=20 =20
—40 -40
8 12 16 20 24 8 12 16 20 24
Hours Hours
NP15 crisis SP15 crisis
80
60
40
\
=
= : N
2 g 20 - - /\ \
< > < \Y ’
. 0 0 N - N
< S
[V N \// N N
e N ]
-20 -20 \V/ <
\
TR 12 16 20 24 TR 12 16 20 24
Hours Hours

FIGURE 2. Estimated mean hourly spreads (B)

rises to 24, and the number of significant SP15 spreads increases slightly to
14 hours. The price spreads are substantially greater during the crisis period.
Averaging over the significant NP15 spreads, we get spreads of $1.5/MWh (pre-
crisis) and $37.7/MWh (crisis). When evaluated at the mean day-ahead price,
these spreads imply day-ahead premia of 5% and 30.8%, respectively. In the
SP15, the same calculations imply average spreads of $0.7/MWh (pre-crisis) and
$3.6/MWh (crisis), which correspond to day-ahead premia of 2.6% and 3.1%,
respectively. Thus, utilities paid significant premia to buy electricity in the spot
market, especially in NP15 during the crisis period. To account for the effect of
outliers, a common feature of the electricity prices, we repeated our estimation
treating spreads below the 1% and above the 99% percentiles as missing. The
number of statistically significant spreads and their values did not change
substantially.

Why did electricity suppliers not take advantage of the systematically higher
prices by supplying more electricity in the spot market, especially in NP15 during
the crisis? Borenstein et al. (2004) conclude that uncertainty regarding regulatory
penalties for spot trading led the majority of the market participants to avoid
arbitrage between the spot and day-ahead markets. Moreover, those participants
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who undertook such risky arbitrage did not find it profit-maximizing to eliminate
the price differences, and so they limited their trading volume. On the demand
side, the restructured market had left utilities with little incentive to respond to
price differences because they were collecting a Competition Transition Charge,
the difference between their fixed retail revenue and their wholesale costs, up to
May 2000. In the crisis period after May 2000, Borenstein et al. (2004) argue that
Pacific Gas and Electric, the largest utility operating in NP15, may have exercised
monopsony power to affect prices to its advantage.

5. CONCLUSION

We provide a new method to alleviate the computational burden associated with
ML estimation of VARMA models. Specifically, we propose a state-space
representation that allows the EM algorithm to produce analytical expressions for
the log-likelihood equations. The E step of our algorithm involves a pass of the
Kalman filter along with a fixed-interval smoother. The M step collapses to least-
squares-type regression. We show using simulations that our method is robust to
starting values and converges quickly to the maximum. We illustrate our
technique by estimating a high-dimensional VMA for an efficiency test of the
restructured wholesale California electricity market.

The appealing properties of our algorithm mirror those of the EM algorithm in
many other contexts. As Redner and Walker (1984, Sect. 2.4) note, the EM
algorithm ‘has been found in most instances to have the advantage of reliable
global convergence, low cost per iteration, economy of storage, and ease of
programming, as well as a certain heuristic appeal.” However, compared with the
quadratic convergence of Newton—Raphson and the super-linear convergence of
quasi-Newton methods, the convergence of the EM algorithm is linear at a rate
determined by the proportion of missing information. Jamshidian and Jennrich
(1997) and Meng and Van Dyk (1997) discuss acceleration techniques to improve
the convergence rate. Nevertheless, the simplicity of our closed-form EM
algorithm is a redeeming feature that may trump a more complicated
accelerated algorithm (see Lange, 1995).

APPENDIX

We write the d-dimensional VARMA(p, ¢) in eqn (1) as a VAR(1) ¥, = AY,_; + N,, with N,
being zero mean independently and identically distributed with covariance matrix Xy
(Lutkepohl, 1993, Sect. 6.3), where:

vV T T T T T T T
=Y Y., - Yt—p+1 ug Uy e ut—q+1]

N=[u 0 -~ 0 u 0 --- 0]"
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sy 0 - 0 Zy 0 --- 07

o o0 -~ 0 0 0 --- 0

_|A4An A s o o0 ---0 0 0 --- 0

T Ay An|] VT |Zy 0 - 0 Zy 0 - 0

o o0 --- 0 0 0 - 0

L0 O 0 0 O 0]
o O - O, O, 0, 6, 0,1 0,
L, 0 .- 0 0 0 0 0 0
An=|0 L 0 0| 4,=]0 0 0 0
o 0 - I 0 0 0o - 0 0

[dpxdp] |dg xdq)

0 0 0 0 0 0 0 0

00 --- 00 1; 0 0 0

00 --- 00 o 0 --- I; 0

dgxdp] [dg>dg]

As a result of the asymptotic equivalence between the exact and conditional ML estimate
A, say 4, we use the covariance matrix of the conditional ML estimate (Reinsel, 1993, Sect.
4.3.1):

var(vec(4)) = (%) Iy ® Iy,

vec(Zy) = (I,

(15)

spig — (4 @A) Vec(Zy).
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NOTES

1. See the Gauss Archive of the American Univeristy.
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2. Gordy’s Matlab code is available at http://mgordy.tripod.com/
research.html#software.
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